Какой механизм действия бета лактамных антибиотиков

Содержание

АНТИБАКТЕРИАЛЬНЫЕ ПРЕПАРАТЫ


БЕТА-ЛАКТАМНЫЕ АНТИБИОТИКИ

К β-лактамным антибиотикам (β-лактамам), которые объединяет наличие в структуре β-лактамного кольца, относятся пенициллины, цефалоспорины, карбапенемы и монобактамы, обладающие бактерицидным действием. Сходство химической структуры предопределяет одинаковый механизм действия всех β-лактамов (нарушение синтеза клеточной стенки бактерий), а также перекрестную аллергию к ним у некоторых пациентов.

Пенициллины, цефалоспорины и монобактамы чувствительны к гидролизующему действию особых ферментов – β-лактамаз, вырабатываемых рядом бактерий. Карбапенемы характеризуются значительно более высокой устойчивостью к β-лактамазам.

С учетом высокой клинической эффективности и низкой токсичности β-лактамные антибиотики составляют основу антимикробной химиотерапии на современном этапе, занимая ведущее место при лечении большинства инфекций.

ПЕНИЦИЛЛИНЫ

Пенициллины являются первыми антимикробными препаратами, разработанными на основе биологически активных субстанций, продуцируемых микроорганизмами. Родоначальник всех пенициллинов, бензилпенициллин, был получен в начале 40-х годов XX столетия. В настоящее время группа пенициллинов включает более десяти антибиотиков, которые в зависимости от источников получения, особенностей строения и антимикробной активности подразделяются на несколько подгрупп (табл. 1).

Таблица 1. Классификация пенициллинов

ПриродныеБензилпенициллин (пенициллин)
Бензилпенициллин прокаин
Бензатин бензилпенициллин
Феноксиметилпенициллин
Бензатин феноксиметилпенициллин
Полусинтетические
АнтистафилококковыеОксациллин
Расширенного спектра

    Аминопенициллины


Ампициллин
Амоксициллин
Антисинегнойные

    Карбоксипенициллины

    Уреидопенициллины


Карбенициллин
Тикарциллин
Азлоциллин
Пиперациллин
ИнгибиторозащищенныеАмоксициллин/клавуланат
Ампициллин/сульбактам
Тикарциллин/клавуланат
Пиперациллин/тазобактам
КомбинированныеАмпициллин/оксациллин

Общие свойства:

  • Бактерицидное действие.
  • Низкая токсичность.
  • Выведение в основном через почки.
  • Широкий диапазон дозировок.
  • Перекрестная аллергия между всеми пенициллинами и частично цефалоспоринами и карбапенемами.

ПРИРОДНЫЕ ПЕНИЦИЛЛИНЫ

К природным пенициллинам относится, по существу, только бензилпенициллин. Однако, исходя из спектра активности, пролонгированные (бензилпенициллин прокаин, бензатин бензилпенициллин) и пероральные (феноксиметилпенициллин, бензатин феноксиметилпенициллин) производные также можно отнести к этой группе. Все они разрушаются β-лактамазами, поэтому их нельзя использовать для терапии стафилококковых инфекций, так как в большинстве случаев стафилококки вырабатывают β-лактамазы.

БЕНЗИЛПЕНИЦИЛЛИН (ПЕНИЦИЛЛИН)

Является первым природным антибиотиком. Несмотря на то, что почти за 60 лет, прошедших с начала его применения, внедрены многие другие антибиотики, пенициллин продолжает оставаться одним из важных препаратов.

Достоинства

  • Мощное бактерицидное действие в отношении ряда клинически значимых возбудителей (стрептококки, менингококки и др.).
  • Низкая токсичность.
  • Низкая стоимость.

Недостатки

  • Приобретенная резистентность стафилококков, пневмококков, гонококков, бактероидов.
  • Высокая аллергенность, перекрестная со всеми пенициллинами.

Спектр активности

Грам(+) кокки:стрептококки (особенно БГСА), включая пневмококки;
энтерококки (устойчивы к низким концентрациям);
стафилококки, однако большинство штаммов (S.aureus, S.epidermidis) устойчивы, так как вырабатывают β-лактамазы.
Грам(-) кокки:менингококки;
гонококки (в большинстве случаев устойчивы).
Грам(+) палочки:листерии, возбудители дифтерии, сибирской язвы.
Спирохеты:бледная трепонема, лептоспиры, боррелии.
Анаэробы:спорообразующие – клостридии;
неспорообразующие – пептококк, пептострептококки, фузобактерии (основной представитель неспорообразующих анаэробов кишечника В.fragilis устойчив);
актиномицеты.

Фармакокинетика

Разрушается в ЖКТ, поэтому неэффективен при приеме внутрь. Хорошо всасывается при введении внутримышечно, пик концентрации в крови достигается через 30-60 мин. Создает высокие концентрации во многих тканях и жидкостях организма. Плохо проникает через ГЭБ и ГОБ, в предстательную железу. Выводится почками. Т1/2 – 0,5 ч.

Нежелательные реакции

  • Аллергические реакции: сыпь, отек Квинке, лихорадка, эозинофилия. Наиболее опасен анафилактический шок, дающий до 10% летальности.
    Меры профилактики
    Тщательный сбор анамнеза, использование свежеприготовленных растворов пенициллина, наблюдение за пациентом в течение 30 мин после первого введения пенициллина, выявление гиперчувствительности методом кожных проб (см. раздел VI).
  • Местнораздражающее действие, особенно при внутримышечном введении калиевой соли.
  • Нейротоксичность: судороги (чаще у детей), при применении высоких доз пенициллина, особенно при почечной недостаточности, при эндолюмбальном введении более 10 тыс ЕД натриевой соли пенициллина или калиевой соли.
  • Нарушения электролитного баланса – гиперкалиемия при использовании высоких доз калиевой соли у пациентов с почечной недостаточностью (1 млн ЕД содержит 1,7 ммоль калия). У пациентов с сердечной недостаточностью при введении больших доз натриевой соли возможно усиление отеков (1 млн ЕД содержит 2,0 ммоль натрия).

Лекарственные взаимодействия

Синергизм при сочетании с аминогликозидами, но их нельзя смешивать в одном шприце, так как при этом отмечается инактивация аминогликозидов. Используются комбинации с другими антибиотиками, например, с макролидами при пневмонии, с хлорамфениколом при менингите.

Следует избегать комбинации с сульфаниламидами.

Показания

  • Инфекции, вызванные БГСА: тонзиллофарингит, рожа, скарлатина, острая ревматическая лихорадка.
  • Внебольничная пневмококковая пневмония.
  • Менингит у детей старше 2 лет и у взрослых.
  • Бактериальный эндокардит – обязательно в сочетании с гентамицином или стрептомицином.
  • Сифилис.
  • Лептоспироз.
  • Боррелиоз (болезнь Лайма).
  • Сибирская язва
  • Анаэробные инфекции: клостридиальные – газовая гангрена, столбняк; неклостридиальные (вызванные неспорообразующими анаэробами) при локализации процесса выше диафрагмы.
  • Актиномикоз.

Дозировка

Взрослые

При инфекциях средней тяжести и высокой чувствительности микрофлоры – 2-4 млн ЕД/сут в 4 введения внутримышечно. При тонзиллофарингите – 500 тыс ЕД каждые 8-12 ч в течение 10 дней. При тяжелых инфекциях – 6-12 млн ЕД/сут, внутримышечно или внутривенно каждые 4-6 ч.

При локализации инфекции в труднодоступном для пенициллина месте (менингит, эндокардит) – 18-24 млн ЕД/сут, в 6 введений внутривенно или/и внутримышечно.

Внутривенно или внутримышечно – 50-100 тыс ЕД/кг/сут в 4 введения, при тонзиллофарингите по 500 тыс ЕД каждые 12 ч в течение 10 дней. При менингите – 300-400 тыс ЕД/кг/сут в 6 введений внутривенно и/или внутримышечно.

Формы выпуска

Флаконы по 125, 250, 500 тыс и 1 млн ЕД порошка для приготовления раствора для инъекций в виде натриевой или калиевой соли.

ФЕНОКСИМЕТИЛПЕНИЦИЛЛИН


Мегациллин

По спектру активности не отличается от пенициллина, но более стабилен при приеме внутрь. Всасывается в ЖКТ на 60%, причем пища мало влияет на биодоступность. Высоких концентраций препарата в крови не создается; прием 0,5 г феноксиметилпенициллина внутрь примерно соответствует введению 300 тыс ЕД пенициллина. Т1/2 – около 1 ч.

Нежелательные реакции

  • Аллергические реакции (см. Бензилпенициллин).
  • Диспептические и диспепсические расстройства.

Показания

  • Стрептококковые (БГСА) инфекции легкой и средней степени тяжести:
    • тонзиллофарингит;
    • инфекции кожи и мягких тканей.
  • Круглогодичная профилактика ревматической лихорадки.
  • Профилактика пневмококковых инфекций у лиц после спленэктомии.

Дозировка

Взрослые

По 0,25-0,5 г каждые 6 ч. При стрептококковом тонзиллофарингите по 0,25 г каждые 8 ч или по 0,5 г каждые 12 ч, обязательно в течение 10 дней. Для профилактики ревматической лихорадки по 0,25 г каждые 12 ч. Принимать внутрь за 1 ч до еды.

Внутрь – 30-50 мг/кг/сут в 3-4 приёма. При стрептококковом тонзиллофарингите по 0,25 г каждые 12 ч, обязательно в течение 10 дней.

Формы выпуска

Таблетки по 0,1 г, 0,25 г, 0,5 г и 1,0 г; сироп; гранулы для приготовления суспензии.

БЕНЗАТИН ФЕНОКСИМЕТИЛПЕНИЦИЛЛИН


Оспен

Является производным феноксиметилпенициллина. По сравнению с ним более стабилен в ЖКТ, быстрее всасывается. Биодоступность не зависит от пищи.

Показания

  • Стрептококковые (БГСА) инфекции легкой и средней степени тяжести:
    • тонзиллофарингит;
    • инфекции кожи и мягких тканей.

Дозировка

Взрослые

Внутрь – 3 млн ЕД/сут в 3-4 приёма, независимо от еды.

Дети до 10 лет

Внутрь – 50-100 тыс ЕД/кг/сут в 3-4 приёма.

Дети старше 10 лет

Внутрь – 3 млн ЕД/сут в 3-4 приёма.

Формы выпуска

Таблетки по 250 тыс и 500 тыс ЕД; суспензия 750 тыс ЕД/5 мл.

ПРОЛОНГИРОВАННЫЕ ПРЕПАРАТЫ ПЕНИЦИЛЛИНА

К пролонгированным препаратам пенициллина (депо-пенициллинам) относятся бензилпенициллин прокаин (новокаиновая соль бензилпенициллина), который имеет среднюю продолжительность действия (около 24 ч), бензатин бензилпенициллин, обладающий длительным действием (до 3-4 недель), а также их комбинированные препараты.

Эти препараты медленно всасываются при внутримышечном введении и не создают высоких концентраций в крови.

Нежелательные реакции

  • Аллергические реакции (см. Бензилпенициллин)
  • Болезненность, инфильтраты на месте внутримышечного введения.
  • Синдром Онэ (Hoigne) – ишемия и гангрена конечностей при случайном введении в артерию.
  • Синдром Николау (Nicholau) – эмболия сосудов легких и головного мозга при введении в вену.

Профилактика сосудистых осложнений: строгое соблюдение техники введения – внутримышечно в верхний наружный квадрант ягодицы с помощью широкой иглы, при обязательном горизонтальном положении пациента. Перед введением необходимо потянуть поршень шприца на себя, чтобы убедиться в том, что игла не находится в сосуде.

Показания

  • Инфекции, вызванные высокочувствительными к пенициллину микроорганизмами:
    • стрептококковый (БГСА) тонзиллофарингит;
    • сифилис.
  • Профилактика сибирской язвы после контакта со спорами (бензилпенициллин прокаин)
  • Круглогодичная профилактика ревматической лихорадки, рецидивирующей рожи.

БЕНЗИЛПЕНИЦИЛЛИН ПРОКАИН

При внутримышечном введении терапевтическая концентрация в крови поддерживается в течение 12-24 ч, однако концентрации ниже, чем при введении эквивалентной дозы бензилпенициллина натриевой или калиевой соли. Т1/2 – 24 ч.

Применяется при нетяжелой пневмококковой пневмонии, стрептококковом тонзиллофарингите (альтернатива бензилпенициллину при невозможности выполнения частых инъекций). Обладает местноанестезирующим действием, противопоказан при аллергии на прокаин (новокаин).

Дозировка

Взрослые

Внутримышечно – 600 тыс-1,2 млн ЕД/сут в 1-2 введения.
Для профилактики сибирской язвы – по 1,2 млн ЕД каждые 12 ч в течение 2 мес.

Внутримышечно – 50-100 тыс ЕД/кг/сут в 1-2 введения.
Для профилактики сибирской язвы – по 25 тыс ЕД/кг каждые 12 ч в течение 2 мес.

Формы выпуска

Флаконы по 300 тыс, 600 тыс и 1,2 млн ЕД порошка для приготовления раствора для инъекций.

БЕНЗАТИН БЕНЗИЛПЕНИЦИЛЛИН


Бициллин-1, Экстенциллин, Ретарпен

Действует более длительно, чем бензилпенициллин прокаин, до 3-4 недель. После внутримышечного введения пиковая концентрация отмечается через 24 ч у детей и через 48 ч у взрослых. Т1/2 – несколько дней.

В последние годы были проведены фармакокинетические исследования отечественных препаратов, содержащих бензатин бензилпенициллин (бициллин-3, бициллин-5). Показано, что при их применении терапевтическая концентрация в сыворотке крови сохраняется не более 14 дней, что требует их более частого введения, чем, например, экстенциллина.

Дозировка

Взрослые

По 1,2-2,4 млн ЕД однократно; при сифилисе – 2,4 млн ЕД/сут каждые 5-7 дней (2-3 введения); для профилактики ревматической лихорадки и рецидивирующей рожи – 1,2-2,4 млн ЕД 1 раз в месяц. Препарат вводится строго внутримышечно.

Внутримышечно – 1,2 млн ЕД однократно; для профилактики ревматической лихорадки – 600 тыс-1 млн ЕД 1 раз в месяц.

Формы выпуска

Флаконы по 300 тыс, 600 тыс, 1,2 млн и 2,4 млн ЕД порошка для приготовления раствора для инъекций.

Бициллин-3

Состав: бензилпенициллина калиевая соль, бензилпенициллин прокаин и бензатин бензилпенициллин в равных количествах. Не имеет преимуществ перед бензатин бензилпенициллином.

Дозировка

Взрослые и дети

Внутримышечно – 1,2 млн ЕД однократно.

Формы выпуска

Флаконы по 300 тыс, 600 тыс, 900 тыс и 1,2 млн ЕД порошка для приготовления раствора для инъекций.

Бициллин-5

Состав: 1 часть бензилпенициллин прокаина, 4 части бензатин бензилпенициллина. Не имеет преимуществ перед бензатин бензилпенициллином.

Дозировка

Взрослые и дети

Внутримышечно – 1,5 млн ЕД однократно; для профилактики ревматической лихорадки – 1,5 млн ЕД 1 раз в месяц.

Формы выпуска

Флаконы по 1,5 млн ЕД порошка для приготовления раствора для инъекций.

Адрес этой страницы: http://www.antibiotic.ru/books/mach/mac0101.shtml

Дата последнего изменения: 24.05.2004 18:56

Бета-лактамные антибиотики: список препаратов

Ежегодно миллионы людей сталкиваются с инфекционными заболеваниями. Некоторые болезни проходят очень быстро и не требуют использования противомикробных препаратов, а с другими можно справиться исключительно антибиотиками бета-лактамной группы. Они отличаются низкой токсичностью и высокой клинической эффективностью.

Общая классификация бета-лактамных антибиотиков

Противомикробные лекарства появились в 1928 году. Александр Флеминг в ходе опытов заметил, что стафилококки гибнут от воздействия обыкновенной плесени. В процессе многолетних исследований учеными были синтезированы антибиотики бета-лактамного ряда. Отличительной особенностью антибактериальных препаратов этого вида является наличие бета-лактамного кольца в молекулярной формуле. К антибиотикам этой группы относят:

  • Пенициллины. Их получают из колоний плесневых грибов.
  • Цефалоспорины. Вещества, обладающие схожей с пенициллинами структурой, но способные справиться с пенициллинустойчивыми микроорганизмами.
  • Карбапенемы. Отличаются более устойчивой к бета- лактамазам структурой.
  • Монобактамы. Вещества, эффективные только против грамотрицательных бактерий.

Пенициллины

Бета-лактамы этого вида были обнаружены Александром Флемингом. Бактериолог оставил кусочек плесневелого хлеба возле колонии стафилококков, и заметил, что возле плесени болезнетворных микроорганизмов нет. В чистом виде антибиотик синтезировали только в 1938 году. Пенициллин полностью безопасен для млекопитающих, т.к. в их организме отсутствует муреин, но у некоторых людей есть врожденная непереносимость этого вещества. Антибактериальные лекарства можно разделить на природные и искусственно синтезированные.

Самыми эффективными считаются полусинтетические пенициллины, т.к. они губительны для большинства грамположительных и грамотрицательных бактерий. Они воздействуют на пенициллинсвязывающие белки микроорганизмов, которые являются основным компонентом клеточной стенки. После введения пенициллины быстро проникают в легкие, почки, слизистые оболочки кишечника и репродуктивных органов, костный мозг и кости (при синтезе кальция), плевральной и перитонеальной жидкости.

Показания к применению

Пенициллины назначают при заражении грамположительными и грамотрицательными палочками, кокками, спирохетами, синегнойной палочкой и другими бактериями. Природные антибиотики сегодня используют при эмпирической терапии, т.е. когда диагноз точно не установлен. В иных случаях доктора назначают полусинтетические пенициллины. Показания к применению:

  • инфицирование крови;
  • рожистое воспаление;
  • остеомиелит;
  • менингококковые инфекции;
  • пневмония;
  • гнойный плеврит;
  • дифтерия;
  • тонзиллит;
  • инфекционно-воспалительные заболевания ушей, ротовой полости, носа;
  • актиномикозы;
  • злокачественный карбункул.

При проблемах с функционированием печени, почек, сердца препараты назначают в пониженных дозировках. Максимальная детская доза составляет 300 мг/сутки. Бета-лактамные антибиотики нельзя употреблять без контроля для лечения перечисленных болезней, т.к. штаммы болезнетворных бактерий очень быстро развивают к ним устойчивость. При несоблюдении этого правила пациент рискует себе сильно навредить.

Противопоказания и побочные эффекты

При индивидуальной непереносимости использовать пенициллины для лечения прогрессирующих инфекций нельзя. Людям, с диагностированной эпилепсией, препарат не вводят в область между надкостницей и оболочкой спинного мозга. Побочные эффекты при соблюдении дозировок проявляются очень редко. Пациенты могут столкнуться с:

  • расстройством желудочно-кишечного тракта (ЖКТ): тошнотой, рвотой, поносом, жидким стулом;
  • слабостью, сонливостью, повышенной раздражительностью;
  • кандидозом ротовой полости или влагалища;
  • дисбактериозом;
  • задержкой воды в организме и отеками.

У пенициллинов есть определенные особенности, которые могут привести к появлению нежелательных эффектов. Антибиотики нельзя смешивать в одном шприце или одной инфузионной системе с аминогликозидами, т.к. эти вещества несовместимы по физико-химическим свойствам. При комбинировании ампициллинов с аллопуринолом сильно возрастает риск развития аллергической реакции.

Использование повышенных доз бета-лактамных веществ этого вида с калийсберегающими диуретиками, ингибиторами ангиотензинпревращающего фермента (АПФ), препаратами калия сильно увеличивает риск гиперкалиемии. При лечении инфекций, вызванных синегнойной палочкой, больной должен временно отказаться от антикоагулянтов, антиагрегантов, тромболитиков. Если пациент этого не сделает, он столкнется с повышенной кровоточивостью.

Практически все антибиотики снижают эффективность пероральных контрацептивов, т.к. энтерогепатическая циркуляция эстрогенов нарушается. Метотрексат под воздействием пенициллинов будет медленнее выводиться из организма, что сильно повлияет на выработку фолиевой кислоты. Бета-лактамные препараты не следует принимать с сульфаниламидами. Эта комбинация веществ снизит бактерицидный эффект пенициллинов и сильно повысит вероятность развития аллергической реакции.

Представители

Все пенициллины можно разделить на природные и полусинтетические. К первой группе относят антибиотики узкого спектра действия. Они способны справиться исключительно с грамположительными бактериями и кокками. Полусинтетические пенициллины получают в искусственных условиях из конкретных штаммов плесневых грибов. В медицине выделены следующие подгруппы и подтипы пенициллинов:

Все, что вам нужно знать про антибиотики. Часть 2. Бета-лактамы

Дорогие друзья, здравствуйте!

Сегодня мы продолжим разговор об антибиотиках, начатый в прошлый раз.

Мы с вами уже обсудили, какие средства относятся к антибиотикам, как они действуют, какие они бывают, почему возникает резистентность микробов к ним, и какой должна быть рациональная антибиотикотерапия.

Сегодня мы поговорим о двух популярных группах антибиотиков, рассмотрим их общие характеристики, показания к применению, противопоказания и наиболее частые побочные эффекты.

Сначала разберем, что такое…

Бета-лактамы

Бета-лактамы — это группы антибиотиков, в химической формуле которых имеется бета-лактамное кольцо.

Оно выглядит вот так:

Бета-лактамным кольцом антибиотик соединяется с ферментом микроба, необходимым для синтеза клеточной стенки.

После образования этого союза ее синтез становится невозможным. В результате границы бактериального дома разрушаются, в клетку начинает проникать жидкость из окружающей среды, и бактерия гибнет, даже не успевая вызвать нотариуса.

Но в прошлый раз мы с вами уже говорили, что бактерии – довольно креативные ребята, которые очень любят жизнь. Их совсем не греет перспектива лопнуть как мыльный пузырь от отека себя, любимого, когда клеточная стенка будет разрушена антибиотиком.

Чтобы не допустить этого, они придумывают различные штучки-дрючки. Одна из них – выработка ферментов (бета-лактамаз, или пенициллиназ), которые соединяются с бета-лактамным кольцом антибиотика и делают его неактивным. В результате антибиотик не может совершить свой террористический акт.

Но в микробном мире происходит все как у людей: есть бактерии более креативные и менее креативные, т.е. у одних способность к выработке бета-лактамаз выше, у других ниже. Поэтому на одни бактерии антибиотик действует, а на другие нет.

Теперь, когда я вам объяснила эти чрезвычайно важные вещи, можно переходить непосредственно к разбору групп антибиотиков.

Чаще всего из бета-лактамов врачи назначают пенициллины и цефалоспорины.

Пенициллины

Пенициллины делятся на природные и полусинтетические.

К природным относятся бензилпенициллин, бициллин, феноксиметилпенициллин.

Действуют они на очень ограниченный круг бактерий: стрептококков, вызывающих ангину, скарлатину, рожистое воспаление кожи; возбудителей гонореи, менингита, сифилиса, дифтерии.

Бензилпенициллин разрушается соляной кислотой желудка, поэтому принимать его через рот бессмысленно. Он вводится только парентерально, причем для поддержания нужной концентрации в крови его вводят каждые 4 часа.

Понимая все минусы бензилпенициллина, ученые мужи продолжали работать над совершенствованием этой группы, и на фарм. рынок вышел Бициллин . Он тоже применяется только парентерально, но зато создает депо антибиотика в мышечной ткани, поэтому обладает длительным действием. Он вводится 1-2 раза в неделю, а Бициллин-5 и того реже: 1 раз в 4 недели.

Ну, а потом появился феноксиметилпенициллин — пенициллин для перорального применения.

Он хоть тоже не особо кислотоустойчивый, но побольше, чем бензилпенициллин.

Но на стафилококк, который является причиной многих инфекций, он по-прежнему не действует.

А все потому, что стафилококк вырабатывает те самые ферменты бета-лактамазы, которые делают антибиотик неактивным. Поэтому все природные пенициллины на него практически не влияют.

Нужно было создавать что-то, уничтожающее и этого «зверя».

Поэтому был разработан полусинтетический пенициллин – Оксациллин , который устойчив к бета-лактамазам большинства стафилококков.

Но опять возникла проблема: его активность в отношении других бактерий оказалась чисто символической. А учитывая, что идентификацию возбудителя, вызвавшего то или иное заболевание, у нас проводят редко (по крайней мере, в амбулаторных условиях), применение оксациллина вообще не оправдано.

Шли годы. Работы над пенициллинами продолжались. Каждый следующий препарат в чем-то превосходил предыдущие, но проблемы оставались.

И вот, наконец, в аптеках появился Ампициллин , до сих пор нежно любимый многими пациентами, а возможно, и врачами. Это уже был пенициллин широкого спектра действия: он действовал на стрептококки и некоторые стафилококки, кишечную палочку, возбудителей сальмонеллеза и дизентерии, менингита и гонореи.

В комбинации с оксациллином (препарат Ампиокс ) его эффективность повысилась.

А вслед за ним на рынок вышел Амоксициллин . По сравнению с ампициллином он в 2 раза лучше всасывается в кишечнике, а его биодоступность не зависит от приема пищи. Плюс к этому он лучше проникает в бронхо-легочную систему.

Только проблема формирования резистентности бактерий к этим средствам по-прежнему сохранялась.

И тогда появились «защищенные» пенициллины, сводящие стратегию микробов на нет. Входящие в их состав дополнительные вещества связываются с бета-лактамазами бактерий, обезвреживая их.

Наиболее популярными в группе «защищенных» пенициллинов являются препараты амоксициллина с клавулановой кислотой ( Аугментин, Амоксиклав, Панклав, Флемоклав и др.).

Они работают так.

Клавулановая кислота предлагает бета-лактамазам «руку и сердце», т.е. соединяется с ними. Те становятся «мягкими и пушистыми» и напрочь забывают о своей великой миссии сделать антибиотик неактивным.

Пока клавулановая кислота «охмуряет» бета-лактамазы, амоксициллин тем временем без шума и пыли связывает фермент микроба, участвующий в синтезе клеточной стенки. Клеточная стенка разрушается. Через нее в клетку устремляется жидкость из окружающей среды, и . вуаля. бактерия помирает во цвете лет от асцита отека самой себя.

Показания к применению пенициллинов

Друзья, чтобы не валить все в кучу, я здесь называю те показания, при которых данная группа применяется чаще всего.

Итак, вот показания к применению пенициллинов:

  • Инфекции дыхательных путей и Лор-органов: ангина, синусит, отит, бронхит, пневмония.
  • Инфекции мочевыводящих путей: цистит, пиелонефрит.
  • Состояние после удаления зуба.
  • Язвенная болезнь желудка, так как амоксициллин включен в схемы эрадикации Helicobacter Pylori.

Наиболее частые побочные эффекты пенициллинов:

  • Аллергические реакции.
  • Кандидоз, дисбиоз кишечника.
  • Нарушение функции печени (амоксициллин + клавулановая кислота).
  • Тошнота, рвота, диарея (чаще всего при приеме амоксициллина с клавулановой кислотой).

При продаже препарата амоксициллина с клавулановой кислотой рекомендуйте принимать его во время еды.

Основные противопоказания к применению пенициллинов

Назову только одно абсолютное противопоказание:

Повышенная чувствительность к пенициллинам и другим бета-лактамным антибиотикам.

Беременные, кормящие, дети (только по назначению врача!)

  • Детям – в возрастных дозировках.
  • Беременным – можно.
  • Кормящим – осторожно: у ребенка могут появиться сыпь, кандидоз.

Цефалоспорины

Они тоже относятся к бета-лактамным антибиотикам и тоже оказывают бактерицидное действие. По сравнению с пенициллинами они более устойчивы к бета-лактамазам, поэтому многие врачи в своих назначениях отдают предпочтение именно этой группе.

Помимо этого, они действуют на те бактерии, которые не чувствительны или слабо чувствительны к пенициллинам. В частности, они справляются со стафилококком, клебсиеллой, протеем, синегнойной палочкой и др.

Цефалоспорины были выделены из грибка Cephalosporium acremonium в середине 20-го века и тоже, как и пенициллины, случайно.

Сейчас известно уже 5 поколений цефалоспоринов. Зачем их столько наоткрывали, спросите вы?

Да все затем же: чтобы получить идеальный цефалоспорин, который бы отвечал всем потребностям врачей и пациентов.

Но нет предела совершенству, и мне думается, что эта работа никогда не закончится.

Посмотрите примеры цефалоспоринов разных поколений:

Друг от друга поколения отличаются спектром действия и уровнем антимикробной активности.

Например, первые поколения хорошо действуют на грамположительные бактерии и слабоваты для грамотрицательных.

А последние представители цефалоспоринов активны в отношении широкого спектра и грамположительных бактерий, и грамотрицательных.

Кстати вы помните, что такое грамположительные и грамотрицательные бактерии?

Тогда добавлю в наш разговор капельку микробиологии.

Что такое грамположительные и грамотрицательные бактерии?

Давным-давно, в 19 веке в Дании жил да был биолог по фамилии Грам. И вот однажды, в один прекрасный для всей медицинской науки день, он провел некий эксперимент, особым образом окрасив группу бактерий.

До него многие ученые пытались как-то систематизировать эту недружественную человеку компанию микроорганизмов, но из этого ничего путного не выходило.

А тут… Свершилось! В результате одна часть бактерий окрасилась в ярко-фиолетовый цвет (их назвали по автору грамположительными), а другие остались бесцветными (грамотрицательные), и для окрашивания последних понадобился дополнительный краситель. На картинках грам-положительные бактерии изображают фиолетовыми или синими, а грам-отрицательные – розовыми:

Оказалось, что грамположительные микробы имеют более толстую клеточную стенку, которая хорошо впитывает краситель.

У грамотрицательных бактерий клеточная стенка более тонкая, но зато в ней содержатся липополисахариды, которые придают ей особую прочность и защищают от проникновения в нее антибиотиков, слюны, желудочного сока, лизоцима. Поэтому грамотрицательные бактерии более устойчивы к действию антибиотиков.

Посмотрите на представителей тех и других:

Но вернемся к разговору о препаратах цефалоспоринового ряда.

Отличаются они и биодоступностью. Например, у цефиксима (Супракс) она составляет 40-50%, а у цефалексина достигает 95%.

Различно и их поведение в организме. К примеру, препараты 1 поколения плохо проходят через гематоэнцефалический барьер, поэтому их не используют при менингитах, а препараты 3 поколения в этом деле преуспели больше своих собратьев по фарм. группе.

Так что выбор цефалоспорина напрямую зависит от возбудителя, клинической ситуации и тяжести заболевания.

Показания к применению цефалоспоринов

Цефалоспорины 1 поколения применяются чаще всего в следующих случаях:

  • Инфекции, вызванные стафилококками или стрептококками (при неэффективности пенициллинов).
  • Неосложненные инфекции кожи и мягких тканей легкой и средней степени тяжести.

Цефалоспорины 2 поколения :

  • Инфекции дыхательных путей и Лор-органов – при неэффективности пенициллинов или повышенной чувствительности к ним.
  • Инфекции кожи и мягких тканей.
  • Гинекологические инфекции.
  • Неосложненные инфекции мочевыводящих путей.

Цефалоспорины 3 поколения :

  • Осложненные инфекции кожи и мягких тканей.
  • Тяжелые инфекции мочевыводящих путей.
  • Инфекции, вызванные синегнойной палочкой.
  • Внутрибольничные инфекции.
  • Менингит, сепсис.

Цефалоспорины 4 поколения :

  • Внутрибольничные инфекции.
  • Тяжелые инфекции дыхательных путей.
  • Тяжелые инфекции кожи, мягких тканей, костей и суставов.
  • Сепсис.

Цефалоспорины 5 поколения :

  • Осложненные инфекции кожи и ее придатков, включая инфицированную диабетическую стопу.

Общие противопоказания к назначению цефалоспоринов

  • Аллергия на цефалоспорины в анамнезе.
  • При назначении цефалоспоринов 1 поколения – аллергия на пенициллины, поскольку при этом в ряде случаев отмечается перекрестная аллергия: т.е. человек с аллергической реакцией на пенициллины может дать ее и на цефалоспорины 1 поколения.

Наиболее частые побочные эффекты

  • Аллергические реакции. Но частота их меньше, чем при использовании пенициллинов.
  • Тошнота, рвота, диарея (для пероральных препаратов).
  • Нефротоксичность.
  • Повышенная кровоточивость.
  • Кандидоз полости рта и влагалища.

Антациды уменьшают всасывание пероральных цефалоспоринов в желудочно-кишечном тракте, поэтому между приемом антацида и цефалоспорина должно пройти не менее 2 часов.

Беременные, кормящие, дети (строго по назначению врача!)

  • Беременным можно.
  • Кормящим осторожно.
  • В педиатрической практике эта группа тоже широко используется.

На сегодня мы, пожалуй, наш разговор закончим.

Непростое это дело – разбирать антибиотики.

В следующий раз мы эту тему продолжим.

Если хотите что-то добавить, прокомментировать, спросить – пишите в окошечке комментариев внизу.

А я с вами прощаюсь.

До следующей встречи на блоге «Аптека для человека!».

С любовью к вам, Марина Кузнецова

P.S. Буду признательна, если Вы кликните по кнопкам соц. сетей, которые видите ниже, дабы поделиться ссылкой на статью со своими коллегами.

А если Вы еще не подписаны на новые статьи блога, то Вы можете сделать это прямо сейчас. Это займет не более 3 минут.

Форма подписки имеется в конце каждой статьи и в верхней части страницы. Введите свои имя и e-mail в форму и следуйте инструкциям.

Если что-то не понятно, то посмотрите здесь , как это сделать.

После подписки к Вам на почту придет письмо со ссылкой на скачивание полезных для работы шпаргалок. Если вдруг Вы его не получили, проверьте папку «спам» или напишите мне, разберемся.

Дорогие мои читатели!

Если статья вам понравилась, если вы хотите что-то спросить, дополнить, поделиться опытом, вы можете это сделать в специальной форме ниже.

Только, пожалуйста, не молчите! Ваши комментарии – это моя самая главная мотивация на новые творения для ВАС.

Буду вам крайне признательна, если вы поделитесь ссылкой на эту статью со своими друзьями и коллегами в социальных сетях.

Просто нажмите на кнопки соц. сетей, в которых вы состоите.

Кликанье по кнопкам соц. сетей повышает средний чек, выручку, зарплату, снижает сахар, давление, холестерин, избавляет от остеохондроза, плоскостопия, геморроя!

1. Классификация и микробиологическая характеристика бета-лактамных антибиотиков (бла)

БЛА являются основой современной химиотерапии, так как занимают ведущее или важное место в лечении большинства инфекционных болезней. По количеству применяемых в клинике препаратов – это наиболее многочисленная группа среди всех антибактериальных средств. Их многообразие объясняется стремлением получить новые соединения с более широким спектром антибактериальной активности, улучшенными фармакокинетическими характеристиками и устойчивостью к постоянно возникающим новым механизмам резистентности микроорганизмов. Классификация современных БЛА (основанная на их химической структуре) и препараты, зарегистрированные в Российской Федерации, приведены в табл.1.1.1. Механизмы действия БЛА и устойчивости к ним микроорганизмов

Общим фрагментом в химической структуре БЛА является бета-лактамное кольцо, именно с его наличием связана микробиологическая активность этих препаратов. Схематическое изображение механизмов действия БЛА и устойчивости к ним микроорганизмов приведено на рисунке.

Мишенью действия БЛА в микробной клетке являются ферменты транс- и карбоксипептидазы, участвующие в синтезе основного компонента наружной мембраны как грамположительных, так и грамотрицательных микроорганизмов – пептидогликана.

Благодаря способности связываться с пенициллином (и другими БЛА) эти ферменты получили второе название – пенициллинсвязывающие белки(ПСБ). Молекулы ПСБ жестко связаны с цитоплазматической мембраной микробной клетки, они осуществляют образование поперечных сшивок. Связывание БЛА с ПСБ ведет к инактивации последних, прекращению роста и последующей гибели микробной клетки. Таким образом, уровень активности конкретных БЛА в отношении отдельных микроорганизмов в первую очередь определяется их аффинностью (сродством) к ПСБ. Для практики важно то, что чем ниже аффинность взаимодействующих молекул, тем более высокие концентрации антибиотика требуются для подавления функции фермента.Таблица 1. Классификация современных БЛА

1. Природные: бензилпенициллин, феноксиметилпенициллин

III. Комбинированные препараты

П р и м е ч а н и е: *препараты, обладющие выраженной антианаэробной активностью (цефамицины); **препараты, обладающие выраженной активностью в отношении P. aeruginosa и неферментирущих микроорганизмов.

Однако для взаимодействия с ПСБ антибиотику необходимо проникнуть из внешней среды через наружные структуры микроорганизма. У грамположительных микроорганизмов капсула и пептидогликан не являются существенной преградой для диффузии БЛА. Практически непреодолимой преградой для диффузии БЛА является липополисахаридный слой грамотрицательных бактерий. Единственным путем для диффузии БЛА служат пориновые каналы внешней мембраны, которые представляют собой воронкообразные структуры белковой природы, и являются основным путем транспорта питательных веществ внутрь бактериальной клетки. Следующим фактором, ограничивающим доступ БЛА к мишени действия, являются ферменты бета-лактамазы, гидролизующие антибиотики. Бета-лактамазы, вероятно, впервые появились у микроорганизмов одновременно со способностью к продукции БЛА как факторы нейтрализующие действие синтезируемых антибиотических веществ. В результате межвидового генного переноса бета-лактамазы получили широкое распространение среди различных микроорганизмов, в том числе и патогенных. У грамотрицательных микроорганизмов бета-лактамазы локализуются в периплазматическом пространстве, у грамположительных они свободно диффундируют в окружающую среду. К практически важным свойствам бета-лактамаз относятся: Субстратный профиль(способность к преимущественному гидролизу тех или иных БЛА, например пенициллинов или цефалоспоринов или тех и других в равной степени).Локализация кодирующих генов(плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной наблюдают распространение резистентного клона.Тип экспрессии(конститутивный или индуцибельный). Приконститутивном типе микроорганизмы синтезируют бета-лактамазы с постоянной скоростью, при индуцибельном количество синтезируемого фермента резко возрастает после контакта с антибиотиком (индукции). Чувствительность к ингибиторам. К ингибиторам относятся вещества бета-лактамной природы, обладающие минимальной антибактериальной активностью, но способные необратимо связываться с бета-лактамазами и, таким образом, ингибировать их активность (суицидное ингибирование). В результате при одновременном применении БЛА и ингибиторов бета-лактамаз последние защищают антибиотики от гидролиза. Лекарственные формы, в которых соединены антибиотики и ингибиторы бета-лактамаз, получили название комбинированных, или защищенных, бета-лактамов. В клиническую практику внедрены три ингибитора: клавулановая кислота, сульбактам и тазобактам. К сожалению, далеко не все известные бета-лактамазы чувствительны к их действию. Среди многообразия бета-лактамаз необходимо выделить несколько групп, имеющих наибольшее практическое значение(табл. 2).Более подробную информацию о современной классификации бета-лактамаз и их клиническом значении можно найти в обзорах [1 – 3].

Таким образом, индивидуальные свойства отдельных БЛА определяются их аффинностью к ПСБ, способностью проникать через внешние структуры микроорганизмов и устойчивостью к гидролизу бета-лактамазами.

Поскольку пептидогликан (мишень действия БЛА) является обязательным компонентом микробной клетки, все микроорганизмы в той или иной степени чувствительны к антибиотикам этого класса. Однако на практике реальная активность БЛА ограничивается их концентрациями в крови или очаге инфекции. Если ПСБ не угнетаются при концентрациях антибиотиков, реально достижимых в организме человека, то говорят о природной устойчивости микроорганизма. Однако истинной природной резистентностью к БЛА обладают только микоплазмы, так как у них отсутствует пептидогликан – мишень дейтсвия антибиотиков. Кроме уровня природной чувствительности (или резистентности), клиническую эффективность БЛА определяет наличие у микроорганизмов приобретенной устойчивости. Приобретенная резистентность формируется при изменении одного из параметров, определяющих уровень природной чувствительности микроорганизма.Ее механизмами могут быть:I.Снижение аффинности ПСБ к антибиотикам.II.Снижение проницаемости внешних структур микроорганизма.III.Появление новых бета-лактамаз или изменение характера экспрессии имеющихся. Перечисленные эффекты являются результатом различных генетических событий: мутаций в существующих генах или приобретением новых.

Какой механизм действия бета лактамных антибиотиков

Антибактериальные препараты разделяют на антибиотики — вещества природного происхождения или продукты их химической модификации и химиопрепараты — полностью синтетические соединения, не имеющие аналогов в живой природе. Классификация антибактериальных препаратов основана на их химической структуре и механизмах действия.

Основным элементом химической структуры антибиотиков этой группы, определяющим их антимикробную активность, является бета-лактамное кольцо. Классификация бета-лактамных антибиотиков, спектр их антибактериальной активности приведены в таблицах ниже.

а) Механизмы действия бета-лактамных антибиотиков и устойчивости к ним. Бета-лактамные антибиотики обладают общим механизмом действия на микробную клетку — подавление синтеза пептидогликана путем ингибиции ферментов транс- и карбоксипептидаз. Благодаря способности связываться с пенициллином эти ферменты получили название пенициллинсвязывающих белков (ПСБ).

Устойчивость к бета-лактамным антибиотикам опосредуется следующими механизмами:
— продукцией микроорганизмами ферментов (бета-лактамаз), гидролизующих бета-лактамное кольцо;
— появлением ПСБ со сниженной аффинностью к бета-лактамным антибиотикам;
— активным выведением антибиотиков из микробной клетки;
— нарушением проницаемости внешней мембраны микробной клетки.

б) Бета-лактамазы. Все известные в настоящее время бета-лактамазы делят на 4 молекулярных класса, в пределах которых ферменты характеризуются общностью свойств и определенной аминокислотной гомологией. Бета-лактамазы классов А, С и D относятся к ферментам «серинового» типа (по аминокислоте, находящейся в активном центре фермента). Ферменты класса В относятся к металло-энзимам, поскольку в качестве ко-фермента в них присутствует атом цинка.

С практической точки зрения при характеристике бета-лактамаз необходимо учитывать несколько параметров:
– субстратную специфичность (способность гидролизовать отдельные бета-лактамные антибиотики);
– чувствительность к действию ингибиторов (клавулановой кислоте, сульбактаму и тазобактаму);
– локализацию гена (плазмидная или хромосомная).

В сокращенном виде классификация бета-лактамаз представлена в таблице ниже.

В таблице наглядно показано разнообразие бета-лактамаз. Среди этих ферментов особое внимание в настоящее время уделяется бета-лактамазам широкого и расширенного спектра (БЛРС). Как следует из названий, эти ферменты различаются по способности разрушать отдельные бета-лакгамные антибиотики.

Если ферменты широкого спектра гидролизуют природные и полусинтетические пениниллины, цефалоспорины I поколения, то БЛРС —природные и полусинтетические пенициллины, цефалоспорины I—III и частично IV поколения.

В настоящее время общепризнано, что штаммы Е. coli и Klebsiela spp., продуцирующие БЛРС, необходимо рассматривать как устойчивые к пенициллинам, цефалоспоринам и азтреонаму независимо от конкретных результатов лабораторной оценки антибиотикочувствительности.

в) ПСБ со сниженной аффинностью к бета-лактамным антибиотикам могут появляться в результате двух процессов:
— изменений в собственном геноме микроорганизмов (мутаций, инсерций, де-леций и т.д.), приводящих к аминокислотным заменам;
— приобретения в результате сложных процессов генов дополнительных ПСБ, не свойственных для данного вида микроорганизмов.

Снижение аффинности ПСБ к бета-лактамным антибиотикам приводит к повышению минимальной подавляющей концентрации видимого роста (МПК) антибиотиков, но далеко не всегда сопровождается появлением клинически значимой устойчивости. Так, повышение МПК пенициллина в отношении S. pneumoniae до 2,0 мкг/мл не приводит к неудачам лечения этим антибиотиком.

ПСБ со сниженной аффинностью к бета-лактамным антибиотикам обусловливает устойчивость к этим антибиотикам S. pneumoniae, Staphylococcus spp., N. gonorrhoeae, H. influenzae, Enterococcus spp.

Активное выведение антибиотиков из микробной клетки — функция транспортных белков, локализованных в цитоплазматической мембране микроорганизмов. Чаще всего этот механизм проявляется у Pseudomonas spp.

Нарушение проницаемости внешней мембраны микробной клетки (обычно утрата пориновых белков) встречается только у грамотрицательных бактерий, чаще всего в сочетании с другими механизмами устойчивости.

г) Природные пенициллины. Антибиотики этой группы активны в отношении грамположительных микроорганизмов (Staphylococcus spp., Streptococcus spp.) и некоторых грамотрицательных со сложными потребностями в отношении питания (Neisseria spp.). Препараты чувствительны к действию бета-лакгамаз грамположительных и грамотрицательных микроорганизмов, что является основным фактором, снижающим их клиническое значение.

д) Пенициллиназостабильные пенициллины. Первый антибиотик этой группы метициллин сегодня имеет лишь историческое значение. В силу относительно высокой токсичности и низкой стабильности препарат исключен из медицинского применения. Основным представителем этой группы в настоящее время является оксациллин. Принципиально важное свойство оксациллина — устойчивость к стафилококковым бета-лактамазам (пенициллиназам).

По спектру действия оксациллин сходен с природным пенициллином, однако по уровню активности существенно ему уступает, в связи с чем антибиотик применяется только для лечения верифицированных стафилококковых инфекций.

Устойчивость к оксициллину является маркером наличия у Staphylococcus spp. дополнительного ПСБ — ПСБ2а, опосредующего устойчивость этого микроорганизма ко всем бета-лактамным антибиотикам. Для обозначения данного свойства используется исторически сохранившийся термин «метициллинрезистентность» или его синоним — «оксациллинрезистентность». Для обозначения метициллин-резистентных S. aureus используется аббревиатура MRSA (methicillin-resistant Staphylococcus aureus), Staphylococcus spp. — MRSS (methicillin-resistant Staphylococcus spp.).

Благодаря относительно высокой стабильности при хранении оксациллин используется в диско-диффузионном методе для оценки чувствительности S. pneumoniae к пенициллину.

е) Аминопенициллины. Препараты этой группы активны в отношении основных клинически значимых грамположительных микроорганизмов — Staphylococcus spp. и Streptococcus spp., а также, что крайне важно, в отношении Enterococcus spp. Из грамотрицательных бактерий к аминопенициллинам высокочувствительны Neisseria spp. и М. catarrhalis. Несколько менее активны аминопенициллины в отношении Е. coli, Salmonella spp., Shigella spp., Haemophilus spp. и H. pylori.

Клиническое применение аминопенициллинов в настоящее время существенно ограничено широким распространением антибиотикорезистентности, обусловленной, в первую очередь, бета-лактамазами. Указанные ферменты продуцирует большинство бактерий, за исключением Streptococcus spp., Enterococcus spp. и H. pylori.

Планируя оценку чувствительности микроорганизмов к аминопенициллинам, следует иметь в виду, что критерии чувствительности разработаны не для всех комбинаций микроб—антибиотик. Так, для Enterobacteriaceae существуют критерии чувствительности только к ампициллину, результаты, получаемые при оценке чувствительности к этому антибиотику, следует экстраполировать и на амоксициллин.

ж) Карбоксипенициллины активны в отношении грамположительных микроорганизмов, за исключением Enterococcus spp. и MRSS, однако уровень их активности несколько ниже, чем у аминопенициллинов. Им свойственна природная активность в отношении подавляющего большинства грамотрицательных микроорганизмов, включая Р. aeruginosa. Исключением является низкая способность воздействовать на К. pneumoniae. Несмотря на широкий спектр антибактериальной активности карбоксипенициллинов, их использование ограничено в связи с широким распространением устойчивости среди большинства микроорганизмов.

При оценке чувствительности к карбоксипенициллинам следует помнить, что критерии чувствительности Enterobacteriaceae и Р. aeruginosa различаются.

Уреидопенициллины высокоактивны в отношении практически всего спектра грамотрицательных патогенов, а также в отношении подавляющего большинства грамположительных бактерий, включая Е. faecalis. Из-за высокой чувствительности к гидролизу, вызываемому подавляющим большинством бета-лактамаз, область практического применения этих антибиотиков в настоящее время сведена к минимуму. Реальное значение сохраняет лишь ингибиторзащищенный пиперациллин (пиперациллин/тазобактам).

Однако и этот антибиотик сегодня в РФ практически недоступен. Критерии чувствительности Enterobacteriaceae и Р. aeruginosa к уреи-допенициллинам различаются.

з) Цефалоспорины I поколения. Антибиотики этой подгруппы обладают наибольшей активностью в отношении S. pyogenes и Staphylococcus spp., как не продуцирующих, так и продуцирующих бета-лактамазы. Из грамотрицательных бактерий к цефалоспоринам I поколения чувствительны лиш ь Escherichia spp., Salmonella spp., Shigella spp. и P. mirabilis. Однако лечение инфекций, вызываемых перечисленными бактериями, цефалоспоринами I поколения нецелесообразно из-за высокой частоты приобретенной устойчивости (препараты чувствительны к бета-лактамазам грамотрицательных бактерий как широкого, так и расширенного спектров) и наличия клинически существенно более эффективных препаратов других групп.

и) Цефалоспорины II поколения. Антибиотики этой подгруппы устойчивы к гидролизу, вызываемому плазмидными бета-лактамазами грамотрицательных бактерий широкого спектра. Однако следует отметить, что уровень активности цефалоспоринов II поколения в отношении таких бактерий, как Enterobacter spp., Serratia spp., по сравнению с препаратами III поколения невысок.

К цефалоспоринам II поколения относится подгруппа цефамицинов (цефок-ситин, цефотетан и цифметазол) — препаратов, обладающих активностью в отношении анаэробов и устойчивых к действию БЛРС.

В лабораторной практике такое свойство цефамицинов, как устойчивость к БЛРС, используется для дифференцировки штаммов, продуцирующих БЛРС класса А и хромосомные бета-лактамазы класса С. Штаммы, продуцирующие БЛРС, проявляют устойчивость к цефалоспоринам III поколения, но сохраняют чувствительность к цефамицинам. Штаммы, продуцирующие бета-лактамазы класса С, устойчивы к обеим группам антибиотиков.

к) Цефалоспорины III поколения. Антибиотики этой подгруппы составляют основу лечения широкого круга как внебольничных, так и госпитальных инфекций.

Общими свойствами цефалоспоринов III поколения является широкий спектр действия и высокая активность в отношении всего семейства Enterobacteriaceae. Активность в отношении грамположительных микроорганизмов несколько ниже, чем у цефалоспоринов I—II поколений, но клинически значимая. Они устойчивы к действию стафилококковых бета-лактамаз и бета-лактамаз широкого круга грамотрицательных микроорганизмов.

Все препараты гидролизуются БЛРС, однако скорость гидролиза отдельных представителей группы может существенно различаться. На практике это приводит к тому, что микроорганизм, продуцирующий эти ферменты, по формальным критериям может считаться чувствительным к цефалоспоринам III поколения, но в клинике эффективность антибиотиков окажется существенно сниженной. В этой связи возникла необходимость в проведении дополнительных исследований для детекции БЛРС.

л) Цефалоспорины VI поколения. Единственный представитель данной группы цефепим во многом сходен с цефалоспоринами III поколения, но имеются и практически важные отличия. Антибиотик высокоактивен в отношении грамположительных микроорганизмов — по уровню активности в отношении Staphylococcus spp. и Streptococcus spp. он превосходит представителей III поколения. Высока активность цефепима и в отношении всех представителей Enterobacteriaceae, а также, что практически крайне важно, в отношении Pseudomonas spp. и других неферментирующих бактерий.

Антибиотик устойчив к гидролизу стафилококковыми бета-лактамазами и плазмидными бета-лактамазами широкого спектра грамотрицательных бактерий. Существенным его отличием от цефалоспоринов III поколения является устойчивость к гидролизу бета-лактамазами класса С (хромосомными и плазмидными). Цефепим разрушается БЛРС, однако в значительно меньшей степени, чем цефалоспорины III поколения. Вопрос о клиническом значении цефепима при инфекциях, вызываемых продуцентами БЛРС, окончательно не решен. Вероятно, в большинстве случаев антибиотик эффективен, однако не исключены клинические неудачи.

м) Карбапенемы обладают наиболее широким спектром активности из всех известных антибиотиков. К этим антибиотикам чувствительны практически все клинически значимые грамположительные и грамотрицательные бактерии.

Приобретенная устойчивость к карбапенемам распространена практически только среди Р. aeruginosa. Устойчивость среди Enterobacteriaceae встречается очень редко, она может быть обусловлена комбинацией нескольких механизмов (например, гиперпродукцией бета-лактамаз и снижением проницаемости). При выделении представителей этого семейства, устойчивых к карбапенемам, результаты необходимо тщательно проверять.

н) Монобактамы представлены единственным антибиотиком — азтреонамом. По уровню активности в отношении грамотрицательных микроорганизмов (Enterobacteriaceae, Pseudomonas spp. и других неферментиирующих бактерий) антибиотик сходен с цефалоспоринами III поколения, однако он полностью лишен активности в отношении грамположительных бактерий.

о) Ингибиторзащищенные бета-лактамы. Сегодня в медицинской практике доступны три ингибитора бета-лактамаз — клавулановая кислота, сульбактам и тазобактам. Перечисленные соединения подавляют активность бета-лактамаз класса А, но не влияют на ферменты других классов. Клавулановая кислота входит в комбинации с амоксициллином и такарциллином, сульбактам — с ампициллином и цефоперазоном, тазобактам — с пиперациллином. Основным преимуществом защищенных производных является устойчивость к действию бета-лактамаз. Благодаря этим свойствам защищенные аминопенициллины проявляют активность в отношении продуцирующих бета-лактамазы штаммов Staphylococcus spp., Е. coli, Klebsiella spp., Proteus spp., а также анаэробов.

Редактор: Искандер Милевски. Дата публикации: 13.06.2019

Читайте также:  Какие грибы используют для получения антибиотиков
Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector